Nonparaxial equation for linear and nonlinear optical propagation.
نویسندگان
چکیده
The formalism of coupled-mode theory, specialized to the continuum of radiation modes, allows us to extend the standard parabolic wave equation to include nonparaxial terms and vectorial effects, and, in particular, to generalize the nonlinear Schrödinger equation that describes propagation in the presence of an intensity-dependent refractive index.
منابع مشابه
Vectorial nonparaxial propagation equation in the presence of a tensorial refractive-index perturbation
The standard scalar paraxial parabolic (Fock–Leontovich) propagation equation is generalized to include allorder nonparaxial corrections in the significant case of a tensorial refractive-index perturbation on a homogeneous isotropic background. In the resultant equation, each higher-order nonparaxial term (associated with diffraction in homogeneous space and scaling as the ratio between beam wa...
متن کاملNonparaxial spatial solitons and propagation-invariant pattern solutions in optical Kerr media.
We investigate nonlinear propagation in the presence of the optical Kerr effect by relying on a rigorous generalization of the standard parabolic equation that includes nonparaxial and vectorial terms. We show that, in the (1 + 1)-D case, both soliton and propagation-invariant pattern solutions exist (while the standard hyperbolic-secant function is not a solution).
متن کاملNonparaxial dark solitons in optical Kerr media.
We show that the nonlinear equation that describes nonparaxial Kerr propagation, together with the already reported bright-soliton solutions, admits of (1 + 1)D dark-soliton solutions. Unlike their paraxial counterparts, dark solitons can be excited only if their asymptotic normalized intensity u2infinity is below 3/7; their width becomes constant when u2infinity approaches this value.
متن کاملGeneration of linear and nonlinear nonparaxial accelerating beams.
We study linear and nonlinear self-accelerating beams propagating along circular trajectories beyond the paraxial approximation. Such nonparaxial accelerating beams are exact solutions of the Helmholtz equation, preserving their shapes during propagation even under nonlinearity. We generate experimentally and observe directly these large-angle bending beams in colloidal suspensions of polystyre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 22 11 شماره
صفحات -
تاریخ انتشار 1997